

## Jolywood N-Type TOPCon Module Introduction

# 2023

Lei Xiaofei Feb 1<sup>st</sup> 2023

### Content

01

Solar cell technology

02

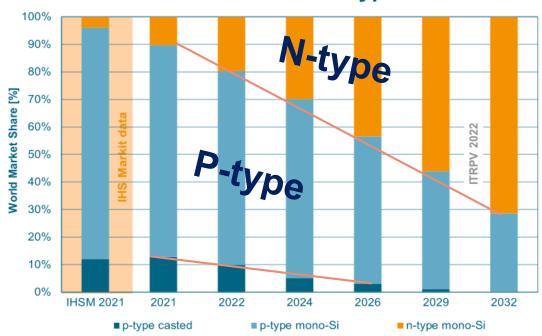
Jolywood NTOPCon module

03

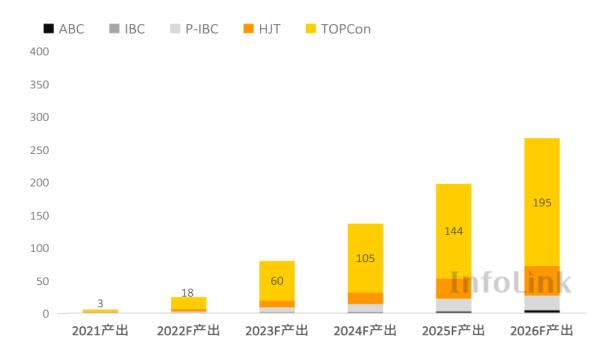
NTOPCon module advantages

04

NTOPCon module application


05

Projects worldwide

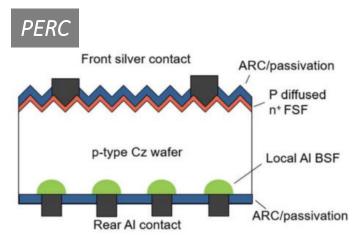


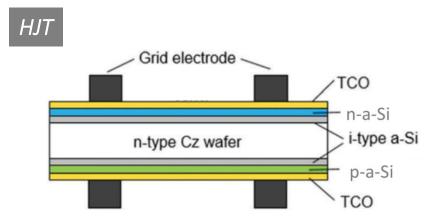


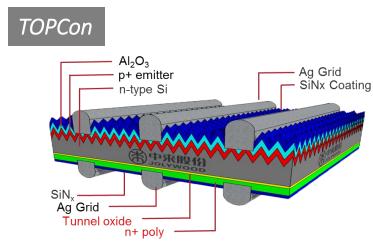


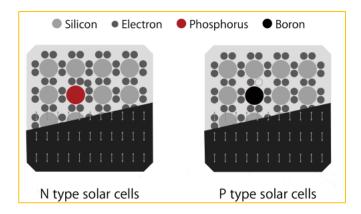



#### Output forecast of high efficiency solar cell, Unit: GW





Source: InfoLink技术趋势调研报告\_Aug-22

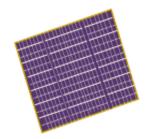

- N type technology market share increases sharply and will become the mainstream in the next three years.
- Among the n-type cell technologies, **TOPCon cell will be the dominance**.


#### **Solar Cell Technical Classification**









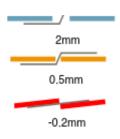



- PERC cell is based on P-type wafer.
- HJT and TOPCon cells are based on N-type wafer.
- Both TOPCon and HJT cell achieve high efficiency through passivation.
- TOPCon uses tunnel oxide layer.
- HJT uses intrinsic amorphous silicon layer.
- In mass production, TOPCon cell (24.5%) has an absolute efficiency of 1.5% than PERC cell (23%) .

### (#) **JOLYWOOD**

### Cell, Module Technology Trend




#### High efficiency cell

- PERC remains mainstream, but there's limited room to improve efficiency.
- TOPCon and HJT emerged.
- Back-contact cells receive increasing attentions.



#### Cell-cutting design

- > Significantly reduce loss incurred by currents.
- > Help accelerate thinning progress of large
- Half-cut deşign remains mainstream.



#### High-density assembling technique

- > Narrowing cell gaps to increase the number of
- > Narrowed-spacing layout is the most widely adopted as its technique is simple.



#### Large wafers

- Bring significant cost advantage.
- M10/G12 become mainstream.

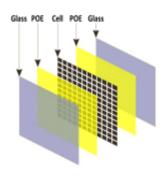


#### Multi-busbar

- Multi-busbar is the solution as wafer becomes bigger.
- Significantly reduce silver paste consumption and inactive area.






Shortened current collection path



#### Non-destructive cutting

- > Reduce risks of micro cracks and ensure yield rates.
- Improve mechanical load.

#### **Bifacial**







### **Jolywood Modules for Different Scenarios**







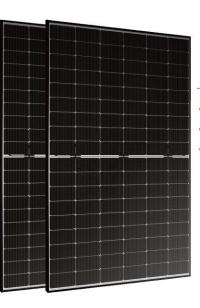


# JW Series



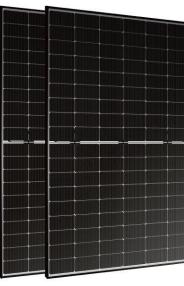





### **NIWA** Series

- Suitable size modules
- High efficiency power modules
- The weight of modules ranges from 20~24.5kg



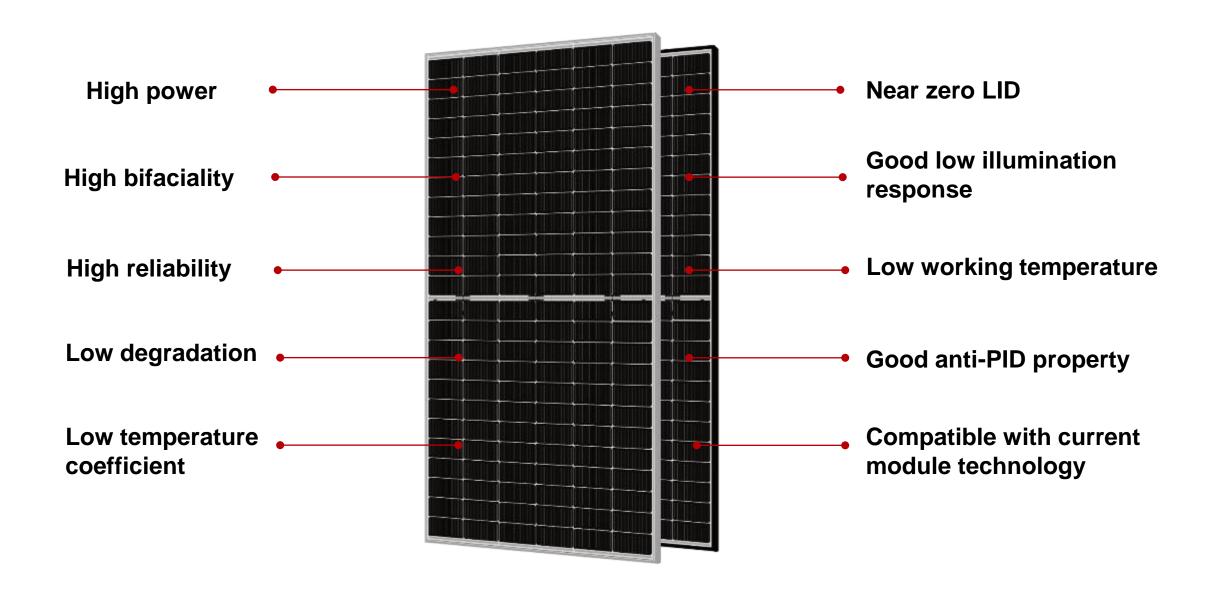

#### **NIWA Black**

- Maximum power: 425W
- Maximum efficiency: 21.76%
- Real black modules
- Type: HD108N-M10
   HD120N-M6
   HT108N-M10
   HT120N-M6



#### **NIWA Pro**

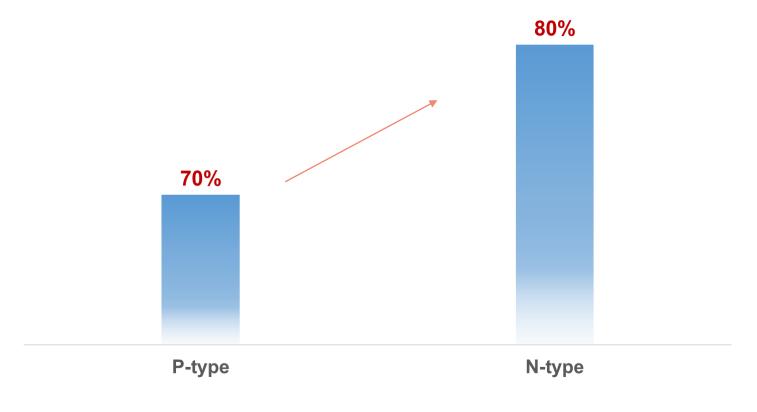
- Maximum power: 435W
- Maximum efficiency: 22.27%
- Type: HD108N-M10 HD120N-M6




#### **NIWA Light**

- Maximum power: 440W
- Maximum efficiency: 22.53%
- Weight: 20kg
- Type: HT108N-M10
  - HT120N-M6








### **TOPCon Advantage**\_\_*High Bifaciality*



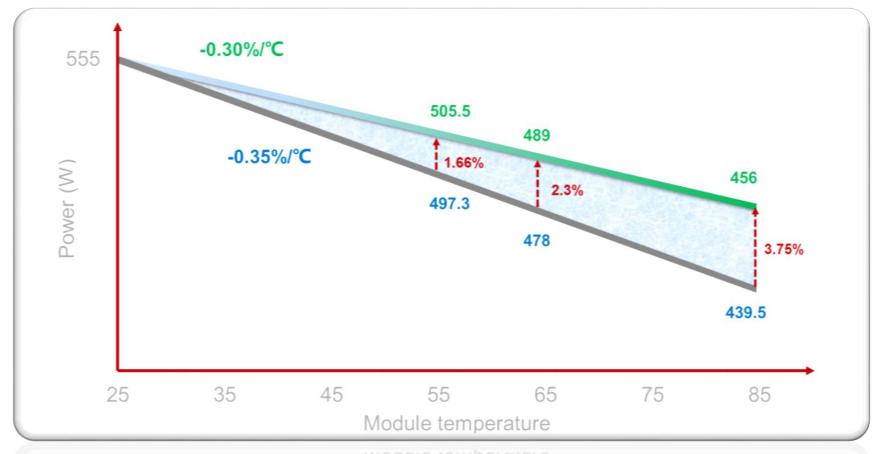
N-type's higher bifaciality will bring a significant power gain of 1% ~ 2%.



| а          | 10%  | 20%   |
|------------|------|-------|
| PERC       | 7.0% | 14.0% |
| TOPCon     | 8.0% | 16.0% |
| Power gain | 1.0% | 2.0%  |

 $Pmax_{BiFi} = Pmax_{front} X (1 + a x Bifi)$ 

\*Bifi: Module bifacial factor


\*a: Bifacial stress irradiance coefficient (depend on irradiance & ground albedo)

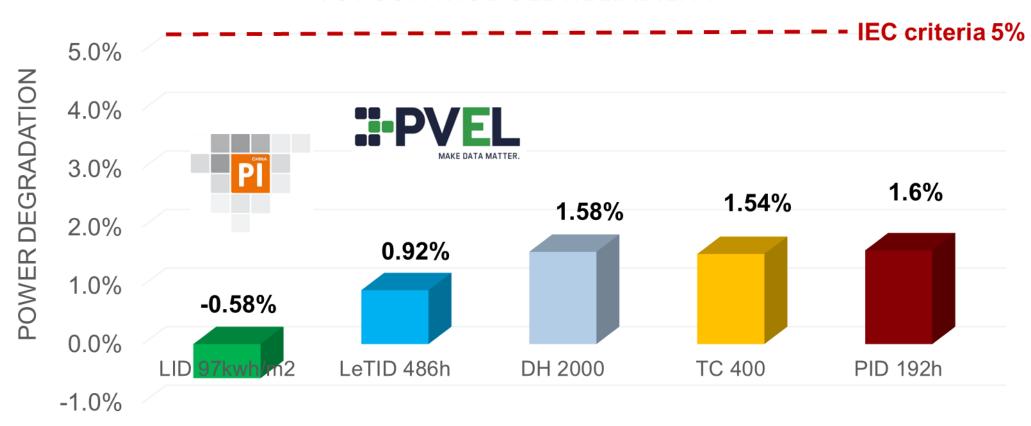
### TOPCon Advantage\_\_Low Temperature Coefficient



• P-type : -0.35%/°C

• N-type : -0.30%/°C

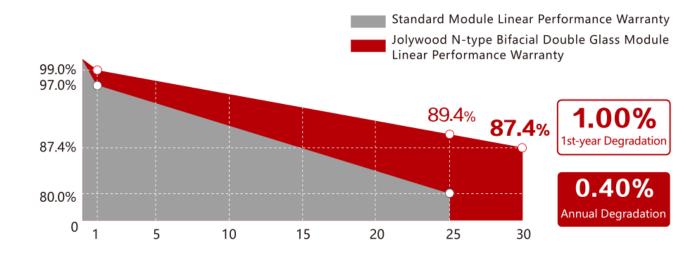



- TOPCon module power output will increase of 0.9% with the better temperature coefficient.
- Under high temperature environment, the benefit will expand to 3.75%.





TOPCon module has a better performance than IEC standard, even under enhanced test sequence.

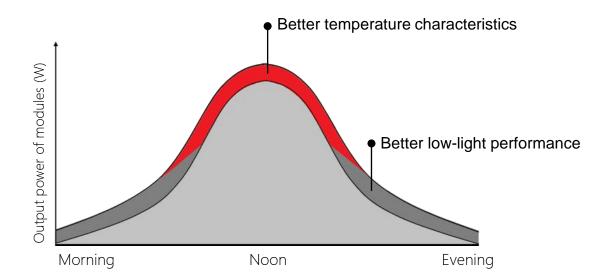





### **TOPCon Advantage**\_\_\_*Warranty*



- The 1<sup>st</sup> year degradation 1%
- Annual degradation 0.4%
- TOPCon module power output remain over
   89.4% at the 25<sup>th</sup> year and over 87.4% at the 30<sup>th</sup> year.




12 Years Product Material & Workmanship 30 Years Linear Performance Warranty

### **TOPCon Advantage\_\_Good low-illumination response**



- TOPCon module works longer during the whole day.
- TOPCon module has a higher power output under low-light environments like on cloudy or foggy days.





Performance of low-light power generation



Power temperature coefficient

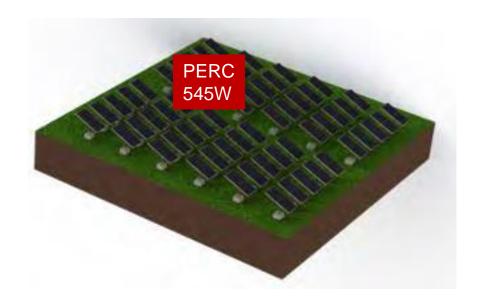


Impact of angle of incidence

### TOPCon Advantage\_\_Improved Energy Generation



Base line: PERC bifacial module.


#### TOPCon module improved Energy Generation

|            | Energy gain |  |
|------------|-------------|--|
| First year | 3.37%       |  |
| 30 years   | 4.18%       |  |

- PVsyst simulaiton
- 1MW, Single axis tracker, Middle East
- TOPCon module: 1st year degradation 1%, annual degradation 0.4%
- PERC module: 1st year degradation 2%, annual degradation 0.45%

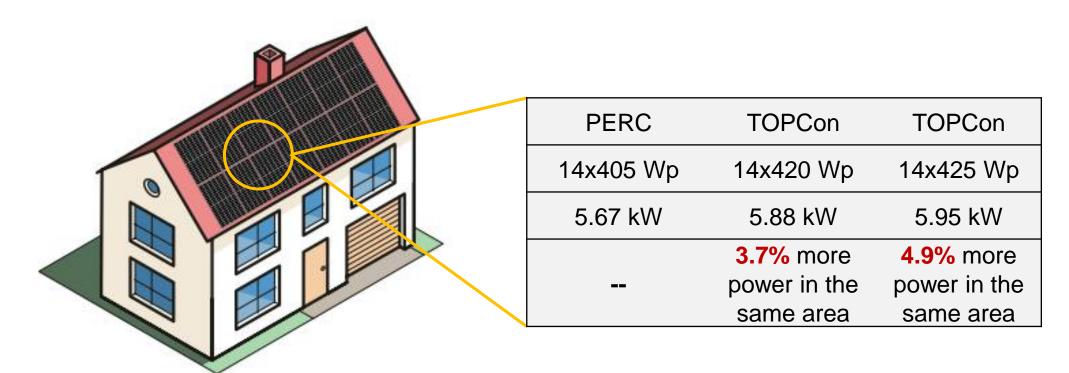
- Bifaciality
- Degradation
- Temperature coefficient
- Low illumination response







- With the same power grade, compared with perc bifacial module, TOPCon bifacial module has a additional energy gain of 3% ~ 5%.
- TOPCon module has a higher power of 3.7% ~ 5.5% compared with perc module, which reduce PV system area related cost, like land area, tracker, cable, installation cost and operation cost, etc.




| Item                                     | Unit   | PERC bifacial | TOPCon bifacial | TOPCon bifacial |
|------------------------------------------|--------|---------------|-----------------|-----------------|
| Annual effective irradiation hours       | h/year | 2000          | 2000            | 2000            |
| Module power                             | Wp     | 545           | 545             | 575             |
| Module price                             | \$/Wp  | 0.272         | 0.29            | 0.302           |
| Effective power                          | Wp     | 512           | 525             | 554             |
| Total cost per watt in life (discounted) | \$/Wp  | 0.701         | 0.720           | 0.72            |
| Initial investment per watt              | \$/Wp  | 0.592         | 0.61            | 0.615           |
| BoS                                      | \$/Wp  | 0.32          | 0.32            | 0.313           |
| LCOE                                     | \$/kWh | 0.0189        | 0.0189          | 0.0189          |

50MW project, Abu Dahbi

- Suppose the LCOE is the same,
- TOPCon module has a premium of 1.8 USC/Wp Vs. P-PERC module.
- TOPCon module has a higher power of 30W, which brings a premium of 3.0 USC/W.

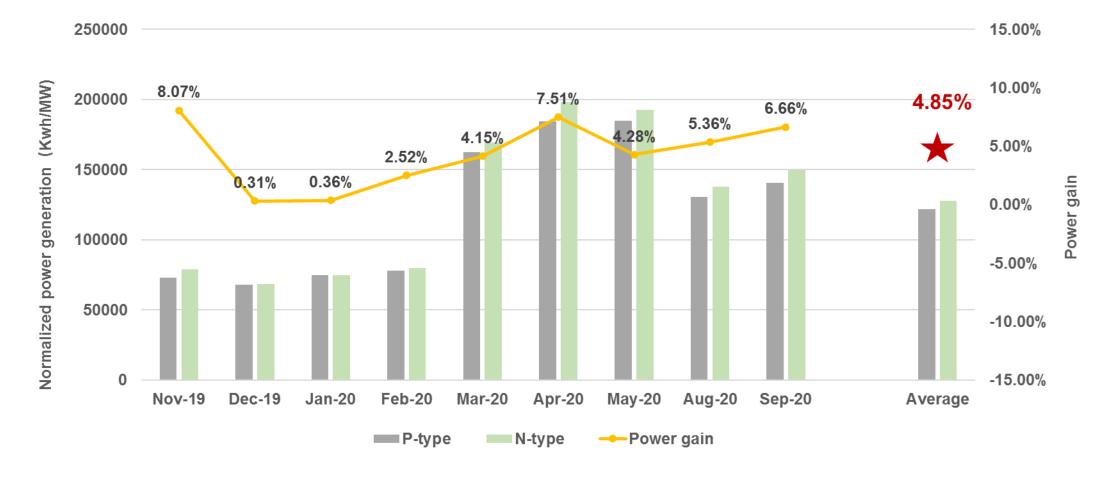




- With the same power grade, compared with perc monofacial module, TOPCon module has a additional energy gain of 7% ~ 10%.
- TOPCon module has a higher power of 3.7% ~ 4.9% compared with perc module, which maximize the solar power system capacity, producing more electricity and increasing the customer's economic benefits.



| Item                                     | Unit   | PERC bifacial | TOPCon bifacial | TOPCon bifacial | TOPCon bifacial |
|------------------------------------------|--------|---------------|-----------------|-----------------|-----------------|
| Annual effective irradiation hours       | h/year | 1200          | 1200            | 1200            | 1200            |
| Module power                             | Wp     | 405           | 415             | 420             | 425             |
| Module price                             | \$/Wp  | 0.279         | 0.305           | 0.308           | 0.311           |
| Effective power                          | Wp     | 370           | 387             | 392             | 396             |
| Total cost per watt in life (discounted) | \$/Wp  | 0.817         | 0.837           | 0.837           | 0.837           |
| Initial investment per watt              | \$/Wp  | 0.729         | 0.750           | 0.751           | 0.752           |
| BoS                                      | \$/Wp  | 0.45          | 0.445           | 0.443           | 0.441           |
| LCOE                                     | \$/kWh | 0.0382        | 0.0382          | 0.0382          | 0.0382          |


- Suppose the LCOE is the same,
- TOPCon module has a premium of 2.59 ~ 3.2 USC/Wp Vs. P-PERC module.

• 1MW project, Germany

#### Plant Power Generation Data---TOPCon VS PERC




- Haixing Top-Runner project
- Compared with PERC bifacial module, TOPCon bifacial module has a higher power generation, with a average power gain 4.85%.



### **TOPCon Module Application**







#### **TOPCon module compatible with solutions from main** tracker manufactures









- TOPCon module can be installed with racking system, 1V and 2P tracking system.
- Compatible with the main stream trackers.











#### **TOPCon module compatible with rooftop racking system**







- TOPCon module can be installed on rooftop racking system.
- Compatible with the main stream racking systems.

#### **TOPCon module compatible with inverters from leading** manufactures across multi scenarios













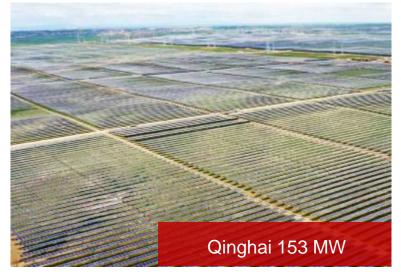













### **Domestic Utility-Scale Cases**













### **Oversea Utility-Scale Cases**













#### **Overseas Residential Cases**

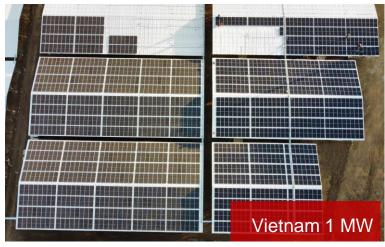











#### Overseas C & I Cases

















### JOLYWOOD

#### Jolywood: Industry-Leading Capacity of N-type High-Efficiency Cell

Launched 36 N-type TOPCon high-efficiency cell production lines

BNEF **Tier 1** Module Manufacture

Annual capacity of **16GW** (end of 2023)

**5.8**gw

Global module shipments (2022)

**7.6**gw

Capacity of TOPCon cells (2022)

**3.6**gw

Capacity of TOPCon modules (2022)

#### Strength

- Launched 36 N-type TOPcon high-efficiency cell production lines
- Annual capacity of 16GW, with the annual output value of RMB 12 billion
- Built by IT Electronics Eleventh Design & Research Institute
   Scientific and Technological Engineering Corporation Limited

#### **Technical Advantages**

- Adopt the latest N-type TOPCon 2.0 technology developed by Jolywood
- Increase the overall efficiency of products by 1.5% and the yield by 3%
- Reduce production costs and improve product competitiveness in the market

#### **Intelligent Factory**

- The largest unmanned AI battery factory in the world
- Equipped with fully automated production equipment, 5G intelligent AGV material and product transmission system
- Adopt fully digital information-based MES management system

#### **Contribution to Reduce Carbon Emission**

- Generate more than 20 billion kWh of green power annually
- Equal to 2.55 million tons of standard coal equivalent
- Reduce carbon dioxide emissions by 16 million tons per year

